
NVBLAS LIBRARY

DU-06702-001_v10.0 | August 2018

User Guide

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 2

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 1

Chapter 1.
INTRODUCTION

The NVBLAS Library is a GPU-accelerated Libary that implements BLAS (Basic Linear
Algebra Subprograms). It can accelerate most BLAS Level-3 routines by dynamically
routing BLAS calls to one or more NVIDIA GPUs present in the system, when the
charateristics of the call make it to speedup on a GPU.

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 2

Chapter 2.
OVERVIEW

The NVBLAS Library is built on top of the cuBLAS Library using only the CUBLASXT
API (See the CUBLASXT API section of the cuBLAS Documentation for more details).
NVBLAS also requires the presence of a CPU BLAS lirbary on the system. Currently
NVBLAS intercepts only compute intensive BLAS Level-3 calls (see table below).
Depending on the charateristics of those BLAS calls, NVBLAS will redirect the calls to
the GPUs present in the system or to CPU. That decision is based on a simple heuristic
that estimates if the BLAS call will execute for long enough to amortize the PCI transfers
of the input and output data to the GPU. Because NVBLAS does not support all
standard BLAS routines, it might be necessary to associate it with an existing full
BLAS Library. Please refer to the Usage section for more details.

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 3

Chapter 3.
GPU ACCELERATED ROUTINES

NVBLAS offloads only the compute-intensive BLAS3 routines which have the best
potential for acceleration on GPUs.

The current supported routines are in the table below :

Routine Types Operation

gemm S,D,C,Z multiplication of 2 matrices.

syrk S,D,C,Z symmetric rank-k update

herk C,Z hermitian rank-k update

syr2k S,D,C,Z symmetric rank-2k update

her2k C,Z hermitian rank-2k update

trsm S,D,C,Z triangular solve with multiple right-hand sides

trmm S,D,C,Z triangular matrix-matrix multiplication

symm S,D,C,Z symmetric matrix-matrix multiplication

hemm C,Z hermitian matrix-matrix multiplication

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 4

Chapter 4.
BLAS SYMBOLS INTERCEPTION

Standard BLAS Library implementations usually expose multiple symbols for the
same routines. Let say func is a BLAS routine name, func_ or/and func are usually
defined as extern symbols. Some BLAS Libraries might also expose some symbols
with a proprietary appended prefix. NVBLAS intercepts only the symbols func_ and
func. The user needs to make sure that the application intended to be GPU-accelerated
by NVBLAS actually calls those defined symbols. Any other symbols will not be
intercepted and the original BLAS routine will be executed for those cases.

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 5

Chapter 5.
DEVICE MEMORY SUPPORT

Starting with Release 8.0, data can be located on any GPU device, even on GPU devices
that are not configured to be part of the computation. When any of the data is located
on a GPU, the computation will be exclusively done on GPU whatever the size of the
problem. Also, this feature has to be used with caution : the user has to be sure that the
BLAS call will be indeed intercepted by NVBLAS, otherwise it will result on a crash
when the CPU Blas tries to execute it.

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 6

Chapter 6.
SECURITY PRECAUTION

Because the NVBLAS Library relies on a symbols interception mechanism, it is essential
to make sure it has not been compromised. In that regard, NVBLAS should never be
used from a process running at elevated privileges, such as Administrator on Windows
or root on Linux.

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 7

Chapter 7.
CONFIGURATION

Because NVBLAS is a drop-in replacement of BLAS, it must be configured through
an ASCII text file that describes how many and which GPUs can participate in the
intercepted BLAS calls. The configuration file is parsed at the time of the loading of the
library. The format of the configuration file is based on keywords optionally followed by
one or more user-defined parameters. At most one keyword per line is allowed. Blank
lines or lines started by the character # are ignored.

7.1. NVBLAS_CONFIG_FILE environment variable
The location and name of the configuration file must be defined by the environment
variable NVBLAS_CONFIG_FILE. By default, if NVBLAS_CONFIG_FILE is not defined,
NVBLAS will try to open the file nvblas.conf in the current directory. For a safe use of
NVBLAS, the configuration file should have have restricted write permissions.

7.2. Configuration keywords
The configuration keywords syntax is described in the following sub-sections.

7.2.1. NVBLAS_LOGFILE
This keyword defines the file where NVBLAS should print status and error messages.
By default, if not defined, the standard error output file (e.g stderr) will be used. It is
advised to define this keyword early in the configuration to capture errors in parsing
that file itself.

7.2.2. NVBLAS_TRACE_LOG_ENABLED
When this keyword is defined, every intercepted BLAS calls will be logged into the
NVBLAS_LOGFILE. This feature, even though intrusive, can be useful for debugging
purpose.

Configuration

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 8

7.2.3. NVBLAS_CPU_BLAS_LIB
This keyword defines the CPU BLAS dynamic library file (e.g .so file on Linux or .dll on
Windows) that NVBLAS should open to find the CPU BLAS symbols definitions. This
keyword must be defined for NVBLAS to work. Because CPU Blas libraries are often
composed of multiple files, even though this keyword is set to the full path to the main
file of the CPU library, it might still be necessary to define the right path to find the rest
of the library files in the environment of your system. On Linux, this can be done by
setting the environment variable LD_LIBRARY_PATH whereas on Windows, this can be
done by setting the environment variable PATH.

For a safe use of NVBLAS, the following precautions are strongly advised:

‣ the CPU BLAS Library should be located where ordinary users do not have write
permissions.

‣ the path specified should be absolute, not relative.

7.2.4. NVBLAS_GPU_LIST
This keyword defines the list of GPUs that should participate in the computation of the
intercepted BLAS calls. If not defined, only GPU device 0 is used, since that is normally
the most compute-capable GPU installed in the system. This keyword can be set to a list
of device numbers separated by blank characters. Also the following wildcard keywords
are also accepted for simplicity :

Keyword Meaning

ALL All compute-capable GPUs detected on the system will be used by NVBLAS

ALL0 GPU device 0, AND all others GPUs detected that have the same compute-capabilities
as device 0 will be used by NVBLAS

Note : In the current release of CUBLAS, the CUBLASXT API supports two GPUs
if they are on the same board such as Tesla K10 or GeForce GTX690 and one GPU
otherwise. Because NVBLAS is built on top of the CUBLASXT API, NVBLAS has the
same restriction. If access to more GPUs devices is needed, details of the licensing are
described at cublasXt.

7.2.5. NVBLAS_TILE_DIM
This keyword defines the tile dimension that should be used to divide the matrices
involved in the computation. This definition maps directly to a call of the cublasXt API
routine cublasXtSetBlockDim. Refer to cuBLAS documentation to understand the
tradeoffs associated with setting this to a larger or a smaller value.

7.2.6. NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME>
This keyword, appended with the name of a BLAS routine disables NVBLAS from
running a specified routine on the GPU. This feature is intended mainly for debugging
purposes. by default, all supported BLAS routines are enabled.

https://developer.nvidia.com/cublasxt

Configuration

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 9

7.2.7. NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME>
This keyword, appended with the name of ta BLAS routine defines the ratio of the
workload that should remain on the CPU in the event that the NVBLAS decides to
offload work for that routine on the GPU. This functionality is directly mapped to the
cublasXt API routine cublasXtSetCpuRatio. By default, the ratio is defined to zero
for all routines. Please refer to the cuBLAS Documentation for details and for the list of
routines which support this feature.

7.2.8. NVBLAS_AUTOPIN_MEM_ENABLED
This keyword enables the Pinning Memory mode. This functionality is directly
mapped to the cublasXt API routine cublasXtSetPinningMemMode. If this keyowrd
is not present in the configuration file, the Pinning Memory mode will be set to
CUBLASXT_PINNING_DISABLED.

There are some restrictions to use this feature as specified in the cuBLAS
documentation of the underlying routine cublasXtSetPinningMemMode. Specifically
when NVBLAS is used in a multi-threaded applications, this option should not
be used if there is a chance that matrices used by different threads overlaps
while calling NVBLAS. Please refer to the cuBLAS Documentation of the routine
cublasXtSetPinningMemMode for details.

Configuration

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 10

7.2.9. Config file Example
The example below shows a typical NVBLAS configuration file :

This is the configuration file to use NVBLAS Library
Setup the environment variable NVBLAS_CONFIG_FILE to specify your own config
 file.
By default, if NVBLAS_CONFIG_FILE is not defined,
NVBLAS Library will try to open the file "nvblas.conf" in its current
 directory
Example : NVBLAS_CONFIG_FILE /home/cuda_user/my_nvblas.conf
The config file should have restricted write permissions accesses

Specify which output log file (default is stderr)
NVBLAS_LOGFILE nvblas.log

Enable trace log of every intercepted BLAS calls
NVBLAS_TRACE_LOG_ENABLED

#Put here the CPU BLAS fallback Library of your choice
#It is strongly advised to use full path to describe the location of the CPU
 Library
NVBLAS_CPU_BLAS_LIB /usr/lib/libopenblas.so
#NVBLAS_CPU_BLAS_LIB <mkl_path_installtion>/libmkl_rt.so

List of GPU devices Id to participate to the computation
Use ALL if you want all your GPUs to contribute
Use ALL0, if you want all your GPUs of the same type as device 0 to contribute
However, NVBLAS consider that all GPU have the same performance and PCI
 bandwidth
By default if no GPU are listed, only device 0 will be used

#NVBLAS_GPU_LIST 0 2 4
#NVBLAS_GPU_LIST ALL
NVBLAS_GPU_LIST ALL0

Tile Dimension
NVBLAS_TILE_DIM 2048

Autopin Memory
NVBLAS_AUTOPIN_MEM_ENABLED

#List of BLAS routines that are prevented from running on GPU (use for debugging
 purpose
The current list of BLAS routines supported by NVBLAS are
GEMM, SYRK, HERK, TRSM, TRMM, SYMM, HEMM, SYR2K, HER2K

#NVBLAS_GPU_DISABLED_SGEMM
#NVBLAS_GPU_DISABLED_DGEMM
#NVBLAS_GPU_DISABLED_CGEMM
#NVBLAS_GPU_DISABLED_ZGEMM

Computation can be optionally hybridized between CPU and GPU
By default, GPU-supported BLAS routines are ran fully on GPU
The option NVBLAS_CPU_RATIO_<BLAS_ROUTINE> give the ratio [0,1]
of the amount of computation that should be done on CPU
CAUTION : this option should be used wisely because it can actually
significantly reduced the overall performance if too much work is given to CPU

#NVBLAS_CPU_RATIO_CGEMM 0.07

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 11

Chapter 8.
INSTALLATION

The NVBLAS Library is part of the CUDA Toolkit, and will be installed along all the
other CUDA libraries. It is available on 64-bit operating systems. NVBLAS Library is
built on top of cuBLAS, so the cuBLAS library needs to be accessible by NVBLAS.

www.nvidia.com
NVBLAS Library DU-06702-001_v10.0 | 12

Chapter 9.
USAGE

To use the NVBLAS Library, the user application must be relinked against NVBLAS
in addition to the original CPU Blas (technically only NVBLAS is needed unless some
BLAS routines not supported by NVBLAS are used by the application). To be sure that
the linker links against the exposed symbols of NVBLAS and not the ones from the CPU
Blas, the NVBLAS Library needs to be put before the CPU Blas on the linkage command
line.

On Linux, an alternative way to use NVBLAS Library is to use the LD_PRELOAD
environment variable; this technique has the advantage of avoiding the relinkage step.
However, the user should avoid defining that environment variable globally because it
will cause the NVBLAS library to be loaded by every shell command executed on the
system, thus leading to a lack of responsiveness of the system.

Finally mathematical tools and libraries often offer the opportunity to specify the BLAS
Library to be used through an environment variable or a configuration file. Because
NVBLAS does not support all the standard BLAS routines, it might be necessary to pair
NVBLAS with a full BLAS library, even though your application only calls supported
NVBLAS routines. Fortunately, those tools and libraries usually offer a way to specify
multiple BLAS Libraries. Please refer to the documentation of the appropriate tools and
libraries for details.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2018 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Introduction
	Overview
	GPU accelerated routines
	BLAS symbols interception
	Device Memory Support
	Security precaution
	Configuration
	7.1. NVBLAS_CONFIG_FILE environment variable
	7.2. Configuration keywords
	7.2.1. NVBLAS_LOGFILE
	7.2.2. NVBLAS_TRACE_LOG_ENABLED
	7.2.3. NVBLAS_CPU_BLAS_LIB
	7.2.4. NVBLAS_GPU_LIST
	7.2.5. NVBLAS_TILE_DIM
	7.2.6. NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME>
	7.2.7. NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME>
	7.2.8. NVBLAS_AUTOPIN_MEM_ENABLED
	7.2.9. Config file Example

	Installation
	Usage

